Abstract

A horizontal rotating tubular bioreactor (HRTB) is designed as the combination of a “thin layer bioreactor” and a “biodisc” reactor. The investigation of mixing in HRTB was done by the temperature step method in a wide range of process conditions [residence time (t z =360036000 s) and bioreactor rotation speed (n=0.0830.917 s−1)]. In all experiments heat losses were detected. A mathematical model based on “tank in series” concept was developed to describe the mixing in HRTB – a “spiral flow” model (SFM) which has incorporated heat losses. However, the simulations of SFM could be used for calculation of temperature response curves for the case when there is no heat losses. These corrected curves were used then to estimate Bodenstein number as a parameter of standard dispersion model (SDM). The obtained Bodenstein numbers were in the range 10–17. The simulations showed that SFM was more capable to describe the mixing in HRTB giving better fitting with experimental measurements than SDM, indicating that mixing pattern in HRTB is too complex to be described with this relatively simple, one-parameter model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.