Abstract
Complementary exponential geometric distribution has many applications in survival and reliability analysis. Due to its importance, in this study, we are aiming to estimate the parameters of this model based on progressive type-II censored observations. To do this, we applied the stochastic expectation maximization method and Newton–Raphson techniques for obtaining the maximum likelihood estimates. We also considered the estimation based on Bayesian method using several approximate: MCMC samples, Lindely approximation and Metropolis–Hasting algorithm. In addition, we considered the shrinkage estimators based on Bayesian and maximum likelihood estimators. Then, the HPD intervals for the parameters are constructed based on the posterior samples from the Metropolis–Hasting algorithm. In the sequel, we obtained the performance of different estimators in terms of biases, estimated risks and Pitman closeness via Monte Carlo simulation study. This paper will be ended up with a real data set example for illustration of our purpose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.