Abstract
The Sherrington–Kirkpatrick model of spin glasses, the Hopfield model of neural networks and the Ising spin glass are all models of binary data belonging to the one-parameter exponential family with quadratic sufficient statistic. Under bare minimal conditions, we establish the $\sqrt{N}$-consistency of the maximum pseudolikelihood estimate of the natural parameter in this family, even at critical temperatures. Since very little is known about the low and critical temperature regimes of these extremely difficult models, the proof requires several new ideas. The author’s version of Stein’s method is a particularly useful tool. We aim to introduce these techniques into the realm of mathematical statistics through an example and present some open questions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.