Abstract

ABSTRACTThe present paper considers the weighted mixed regression estimation of the coefficient vector in a linear regression model with stochastic linear restrictions binding the regression coefficients. We introduce a new two-parameter-weighted mixed estimator (TPWME) by unifying the weighted mixed estimator of Schaffrin and Toutenburg [1] and the two-parameter estimator (TPE) of Özkale and Kaçıranlar [2]. This new estimator is a general estimator which includes the weighted mixed estimator, the TPE and the restricted two-parameter estimator (RTPE) proposed by Özkale and Kaçıranlar [2] as special cases. Furthermore, we compare the TPWME with the weighted mixed estimator and the TPE with respect to the matrix mean square error criterion. A numerical example and a Monte Carlo simulation experiment are presented by using different estimators of the biasing parameters to illustrate some of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.