Abstract

Inverse Gaussian distribution has been used widely as a model in analysing lifetime data. In this regard, estimation of parameters of two-parameter (IG2) and three-parameter inverse Gaussian (IG3) distributions based on complete and censored samples has been discussed in the literature. In this paper, we develop estimation methods based on progressively Type-II censored samples from IG3 distribution. In particular, we use the EM-algorithm, as well as some other numerical methods for determining the maximum-likelihood estimates (MLEs) of the parameters. The asymptotic variances and covariances of the MLEs from the EM-algorithm are derived by using the missing information principle. We also consider some simplified alternative estimators. The inferential methods developed are then illustrated with some numerical examples. We also discuss the interval estimation of the parameters based on the large-sample theory and examine the true coverage probabilities of these confidence intervals in case of small samples by means of Monte Carlo simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.