Abstract
ABSTRACTBiased sampling occurs frequently in economics, epidemiology, and medical studies either by design or due to data collecting mechanism. Failing to take into account the sampling bias usually leads to incorrect inference. We propose a unified estimation procedure and a computationally fast resampling method to make statistical inference for quantile regression with survival data under general biased sampling schemes, including but not limited to the length-biased sampling, the case-cohort design, and variants thereof. We establish the uniform consistency and weak convergence of the proposed estimator as a process of the quantile level. We also investigate more efficient estimation using the generalized method of moments and derive the asymptotic normality. We further propose a new resampling method for inference, which differs from alternative procedures in that it does not require to repeatedly solve estimating equations. It is proved that the resampling method consistently estimates the asymptotic covariance matrix. The unified framework proposed in this article provides researchers and practitioners a convenient tool for analyzing data collected from various designs. Simulation studies and applications to real datasets are presented for illustration. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.