Abstract

Measles outbreaks are still routine, even in countries where vaccination coverage exceeds the guideline of 95%. Therefore, achieving ambitions for measles eradication will require understanding of how unvaccinated children interact with others who are unvaccinated. It is well established that schools and homes are key settings for both clustering of unvaccinated children and for transmission of infection. In this study, we evaluate the potential for contacts between unvaccinated children in these contexts to facilitate measles outbreaks with a focus on the Netherlands, where large outbreaks have been observed periodically since the introduction of mumps, measles and rubella (MMR). We created a network of all primary and secondary schools in the Netherlands based on the total number of household pairs between each school. A household pair are siblings from the same household who attend a different school. We parameterised the network with individual level administrative school and household data provided by the Dutch Ministry for Education and estimates of school level uptake of the MMR vaccine. We analysed the network to establish the relative strength of contact between schools and found that schools associated with low vaccine uptake are highly connected, aided by a differentiated school system in the Netherlands (Coleman homophily index (CHI) = 0.63). We simulated measles outbreaks on the network and evaluated the model against empirical measles data per postcode area from a large outbreak in 2013 (2,766 cases). We found that the network-based model could reproduce the observed size and spatial distribution of the historic outbreak much more clearly than the alternative models, with a case weighted receiver operating characteristic (ROC) sensitivity of 0.94, compared to 0.17 and 0.26 for models that do not account for specific network structure or school-level vaccine uptake, respectively. The key limitation of our framework is that it neglects transmission routes outside of school and household contexts. Our framework indicates that clustering of unvaccinated children in primary schools connected by unvaccinated children in related secondary schools lead to large, connected clusters of unvaccinated children. Using our approach, we could explain historical outbreaks on a spatial level. Our framework could be further developed to aid future outbreak response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.