Abstract

Recent millimeter-VLBI observations of Sagittarius A* (Sgr A*) have, for the first time, directly probed distances comparable to the horizon scale of a black hole. This provides unprecedented access to the environment immediately around the horizon of an accreting black hole. We leverage both existing spectral and polarization measurements and our present understanding of accretion theory to produce a suite of generic radiatively inefficient accretion flow (RIAF) models of Sgr A*, which we then fit to these recent millimeter-VLBI observations. We find that if the accretion flow onto Sgr A* is well described by a RIAF model, the orientation and magnitude of the black hole's spin is constrained to a two-dimensional surface in the spin, inclination, position angle parameter space. For each of these we find the likeliest values and their 1-sigma & 2-sigma errors to be a=0(+0.4+0.7), inclination=50(+10+30)(-10-10) degrees, and position angle=-20(+31+107)(-16-29) degrees, when the resulting probability distribution is marginalized over the others. The most probable combination is a=0(+0.2+0.4), inclination=90(-40-50) degrees and position angle=-14(+7+11)(-7-11) degrees, though the uncertainties on these are very strongly correlated, and high probability configurations exist for a variety of inclination angles above 30 degrees and spins below 0.99. Nevertheless, this demonstrates the ability millimeter-VLBI observations, even with only a few stations, to significantly constrain the properties of Sgr A*.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.