Abstract

Suppose that we have two components, each having a two-parameter exponential distribution. Suppose further that these components are conditionally independent, sharing a common random hazard rate and possessing unequal, fixed, unknown location parameters. We develop estimators for the minimum and maximum of these location parameters when the random hazard rate has an inverse Gaussian distribution. Performance comparisons are made among the proposed estimators. Maximum likelihood estimators are shown to be inadmissible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.