Abstract

Summary form only given. This paper describes a method for estimating the impact of plug-in electric vehicle (PEV) charging on overhead distribution transformers, based on detailed travel demand data and under several different schemes for mitigating overloads by shifting PEV charging times (smart charging). The paper also presents a new smart charging algorithm that manages PEV charging based on estimated transformer temperatures. We simulated the varied behavior of drivers from the 2009 National Household Transportation Survey, and transformer temperatures based an IEEE standard dynamic thermal model. Results are shown for Monte Carlo simulation of a 25 kVA overhead distribution transformer, with ambient temperature data from hot and cold climate locations, for uncontrolled and several smart-charging scenarios. These results illustrate the substantial impact of ambient temperatures on distribution transformer aging, and indicate that temperature-based smart charging can dramatically reduce both the mean and variance in transformer aging without substantially reducing the frequency with which PEVs obtain a full charge. Finally, the results indicate that simple smart charging schemes, such as delaying charging until after midnight can actually increase, rather than decrease, transformer aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.