Abstract

Abstract This study seeks to derive the sea surface temperature (SST) response to anthropogenic forcing from observations over the last century, using simple methods inspired from pattern scaling. As in pattern scaling, the spatial response is assumed to scale with global-mean and annual-mean surface temperature. The long-term aim of this work is to generate anthropogenically forced SST and sea ice patterns for the recent past and near-term future, and use them to force atmosphere–land climate models for attribution and prediction purposes. The present work compares estimation methodologies and, within a Monte Carlo framework based on large initial condition ensembles of climate model simulations, examines the robustness of the patterns obtained. The different methods explored here yield a similar SST spatial response, mostly reflecting the observed SST linear trend map. The different methods nevertheless provide distinctive temporal evolution of the global-mean and annual-mean SST response, which in turn affects the temporal evolution of the global-mean and annual-mean air surface temperature simulated in corresponding prescribed SST simulations. The estimated SST spatial response consists mostly of a warming of the midlatitude coasts near the western boundary currents, the tropical Indian Ocean, and the Arctic Ocean. This pattern generally agrees with previously published observational and modeling studies. Based on Monte Carlo analysis of the large ensembles, it is found that between 36% and 56% of its spatial variance results from anthropogenic forcing. Overall, the work herein provides constraints on the uncertainty associated with the spatial variability of an anthropogenically forced component of climate change derived from observations, which can potentially be used for climate attribution and prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.