Abstract
Resting motor threshold is the basic unit of dosing in transcranial magnetic stimulation (TMS) research and practice. There is little consensus on how best to estimate resting motor threshold with TMS, and only a few tools and resources are readily available to TMS researchers. The current study investigates the accuracy and efficiency of 5 different approaches to motor threshold assessment for TMS research and practice applications. Computer simulation models are used to test the efficiency and accuracy of 5 different adaptive parameter estimation by sequential testing (PEST) procedures. For each approach, data are presented with respect to the mean number of TMS trials necessary to reach the motor threshold estimate as well as the mean accuracy of the estimates. A simple nonparametric PEST procedure appears to provide the most accurate motor threshold estimates, but takes slightly longer (on average, 3.48 trials) to complete than a popular parametric alternative (maximum likelihood PEST). Recommendations are made for the best starting values for each of the approaches to maximize both efficiency and accuracy. In light of the computer simulation data provided in this article, the authors review and suggest which techniques might best fit different TMS research and clinical situations. Lastly, a free user-friendly software package is described and made available on the world wide web that allows users to run all of the motor threshold estimation procedures discussed in this article for clinical and research applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.