Abstract
By use of a common primary-production model and identical photosynthetic parameters, four different methods were used to calculate quanta (Q) and primary production (P) at depth for a study of high-latitude North Atlantic waters. The differences among the four methods relate to the use of pigment information in the upper water column. Methods 1 and 2 use pigment biomass (B) as an input and a subtropical, empirical relation between K(d) (diffuse attenuation coefficient) and B to estimate Q at depth. Method 1 uses measured B, but Method 2 uses B derived from the Coastal Zone Color Scanner (subtropical algorithm) as inputs. Methods 3 and 4 use the phytoplankton absorption coefficient (a(ph)) instead of B as input, and Method B uses empirically derived a(ph)(440) and K(d) values, and Method 4 uses analytically derived a(ph)(440) and a (total absorption coefficient) values based on the same remote measurements as Method 2. When the calculated and the measured values of Q(z) and P(z) were compared, Method 4 provided the closest results [for P(z), r(2) = 0.95 (n = 24), and for Q(z), r(2) = 0.92 (n = 11)]. Method 1 yielded the worst results [for P(z), r(2) = 0.56 and for Q(z), r(2) = 0.81]. These results indicate that one of the greatest uncertainties in the remote estimation of P can come from a potential mismatch of the pigment-specific absorption coefficient (a(ph)*), which is needed implicitly in current models or algorithms based on B. We point out that this potential mismatch can be avoided if we arrange the models or algorithms so that they are based on the pigment absorption coefficient (a(ph)). Thus, except for the accuracy of the photosynthetic parameters and the above-surface light intensity, the accuracy of the remote estimation of P depends on how accurately a(ph) can be estimated, but not how accurately B can be estimated. Also, methods to derive a(ph) empirically and analytically from remotely sensed data are introduced. Curiously, combined application of subtropical algorithms for both B and K(d) to subarctic waters apparently compensates to some extent for effects that are due to their similar and implicit pigment-specific absorption coefficients for the calculation of Q(z).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.