Abstract
We develop a novel method of estimating population size from imperfectly detected counts of individuals and a separate estimate of detection probability. Observed counts are separated into classes within which detection probability is assumed constant. Within a detection class, counts are modeled as a single binomial observation X with success probability p where the goal is to estimate index N. We use a Horvitz–Thompson‐like estimator for N and account for uncertainty in both sample data and estimated success probability via a parametric bootstrap. Unlike capture–recapture methods, our model does not require repeated sampling of the population. Our method is able to achieve good results, even with small X. We show in a factorial simulation study that the median of the bootstrapped sample has small bias relative to N and that coverage probabilities of confidence intervals for N are near nominal under a wide array of scenarios. Our methodology begins to break down when P(X=0)>0.1 but is still capable of obtaining reasonable confidence coverage. We illustrate the proposed technique by estimating (1) the size of a moose population in Alaska and (2) the number of bat fatalities at a wind power facility, both from samples with imperfect detection probabilities, estimated independently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.