Randomized control trials (RCTs) are the gold standard for estimating causal effects, but often use samples that are non-representative of the actual population of interest. We propose a reweighting method for estimating population average treatment effects in settings with noncompliance. Simulations show the proposed compliance-adjusted population estimator outperforms its unadjusted counterpart when compliance is relatively low and can be predicted by observed covariates. We apply the method to evaluate the effect of Medicaid coverage on health care use for a target population of adults who may benefit from expansions to the Medicaid program. We draw RCT data from the Oregon Health Insurance Experiment, where less than one-third of those randomly selected to receive Medicaid benefits actually enrolled.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call