Abstract

Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5.

Highlights

  • Particulate matter with an aerodynamic diameter less than 2.5 μm, termed PM2.5, is a mixture of various gaseous and particulate components, and the primary source of PM2.5 is believed to be anthropogenic emission such as combustion process [1]

  • A few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness (AOT) product

  • These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5

Read more

Summary

Introduction

Particulate matter with an aerodynamic diameter less than 2.5 μm, termed PM2.5, is a mixture of various gaseous and particulate components, and the primary source of PM2.5 is believed to be anthropogenic emission such as combustion process [1]. The monitoring and study of PLOS ONE | DOI:10.1371/journal.pone.0142149. Estimate PM2.5 Using Generalized Additive Model with Multi-Source Data funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.