Abstract

Enhanced nitrous oxide (N2 O) emissions can occur following grassland break-up for renewal or conversion to maize cropping, but knowledge about N2 O production pathways and N2 O reduction to N2 is very limited. A promising tool to address this is the combination of mass spectrometric analysis of N2 O isotopocules and an enhanced approach for data interpretation. The isotopocule mapping approach was applied to field data using a δ15 NspN2O and δ18 ON2O map to simultaneously determine N2 O production pathways contribution and N2 O reduction for the first time. Based on the isotopic composition of N2 O produced and literature values for specific N2 O pathways, it was possible to distinguish: (i) heterotrophic bacterial denitrification and/or nitrifier denitrification and (ii) nitrification and/or fungal denitrification and the contribution of N2 O reduction. The isotopic composition of soil-emitted N2 O largely resembled the known end-member values for bacterial denitrification. The isotopocule mapping approach indicated different effects of N2 O reduction on the isotopic composition of soil-emitted N2 O for the two soils under study. Differing N2 O production pathways in different seasons were not observed, but management events and soil conditions had a significant impact on pathway contribution and N2 O reduction. N2 O reduction data were compared with a parallel 15 N-labelling experiment. The field application of the isotopocule mapping approach opens up new prospects for studying N2 O production and consumption of N2 O in soil simultaneously based on mass spectrometric analysis of natural abundance N2 O. However, further studies are needed in order to properly validate the isotopocule mapping approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.