Abstract

An outstanding problem in chaotic dynamics is to specify generating partitions for symbolic dynamics in dimensions larger than 1. It has been known that the infinite number of unstable periodic orbits embedded in the chaotic invariant set provides sufficient information for estimating the generating partition. Here we present a general, dimension-independent, and efficient approach for this task based on optimizing a set of proximity functions defined with respect to periodic orbits. Our algorithm allows us to obtain the approximate location of the generating partition for the Ikeda-Hammel-Jones-Moloney map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.