Abstract

AbstractInternal waves can transfer energy from large-scale to microscale processes; however, the spectra of these waves remain poorly known. A method that combines modal harmonic decomposition and maximum-likelihood method is proposed in this study to estimate four-dimensional internal wave spectrum using limited mooring observations. Using this method, a four-dimensional internal wave spectrum was obtained for the first time based on the mooring measurements collected during the South China Sea (SCS) Internal Wave Experiment in July 2014. The spectrum was then validated by comparing with the spectrum based on Fourier analysis and with the modified Garrett–Munk internal wave spectrum, respectively. The power of the internal wave spectrum decreased obviously with increasing frequency and wavenumber, with a falloff rate of ω−2 beyond tidal frequencies, and with falloff rates of and for horizontal and vertical wavenumbers, respectively. In addition, at a fixed frequency and vertical wavenumber, the propagation direction and phase speed of internal waves can be obtained through the four-dimensional spectrum. In summary, we verified the feasibility of estimating four-dimensional internal wave spectrum using limited mooring observations in this study, and the method we proposed should be applicable to other regions where such mooring observations are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.