Abstract

Nonlinear time delay differential equations are well known to havearisen in models in physiology, biology and population dynamics. Theyhave also arisen in models of metal cutting processes. Machine toolchatter, from a process called regenerative chatter, has been identifiedas self-sustained oscillations for nonlinear delay differentialequations. The actual chatter occurs when the machine tool shifts from astable fixed point to a limit cycle and has been identified as arealized Hopf bifurcation. This paper demonstrates first that a class ofnonlinear delay differential equations used to model regenerativechatter satisfies the Hopf conditions. It then gives a precisecharacterization of the critical eigenvalues on the stability boundaryand continues with a complete development of the Hopf parameter, theperiod of the bifurcating solution and associated Floquet exponents.Several cases are simulated in order to show the Hopf bifurcationoccurring at the stability boundary. A discussion of a method ofintegrating delay differential equations is also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.