Abstract

Runoff data were analyzed from the semihumid 21.2 km² Goodwin Creek Experimental Watershed (GCEW) in northern Mississippi to examine watershed response over a range of scales. Runoff is monitored at the GCEW outlet and in 13 subcatchments, ranging in area from 0.06 to 17.6 km². Previous data-based studies have shown that simple scaling theory fails to describe scaling of flood quantiles in large watersheds, and there is a fundamental change in scaling behavior in semihumid watersheds at an area of approximately 100 km². It has been found that flood quantiles in nearly all subbasins in the GCEW are self-similar as described by simple scaling theory. It has also been found that expected values of peak flows during single runoff events are described by a power law function of catchment area. The primary reasons why flood quantiles are self-similar on Goodwin Creek are that precipitation is relatively uniform over the basin; peak discharges in smaller catchments are highly correlated with rainfall rates; nearly the entire watershed regularly contributes to runoff and; the groundwater table plays little role in runoff production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.