Abstract
We prove uniform estimates for the expected value of averages of order statistics of bivariate functions in terms of their largest values by a direct analysis. As an application, uniform estimates for the expected value of averages of order statistics of sequences of independent random variables in terms of Orlicz norms are obtained. In the case where the bivariate functions are matrices, we provide a "minimal" probability space which allows us to $C$-embed certain Orlicz spaces $\ell_M^n$ into $\ell_1^{cn^3}$, $c,C>0$ being absolute constants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.