Abstract

Here we introduce graphPAF, a comprehensive R package designed for estimation, inference and display of population attributable fractions (PAF) and impact fractions. In addition to allowing inference for standard population attributable fractions and impact fractions, graphPAF facilitates display of attributable fractions over multiple risk factors using fan-plots and nomograms, calculations of attributable fractions for continuous exposures, inference for attributable fractions appropriate for specific risk factor →\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rightarrow $$\\end{document} mediator →\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rightarrow $$\\end{document} outcome pathways (pathway-specific attributable fractions) and Bayesian network-based calculations and inference for joint, sequential and average population attributable fractions in multi-risk factor scenarios. This article can be used as both a guide to the theory of attributable fraction estimation and a tutorial regarding how to use graphPAF in practical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.