Abstract

The work is devoted to a problem of statistical robustness of deciding functions, or risk estimation. By risk we mean some measure of decision function prediction quality, for example, an error probability. For the case of discrete "independent" variable the dependence of average risk on empirical risk for the "worst" distribution ("strategies of nature") is obtained. The result gives exact value of empirical risk bias that allows evaluating an accuracy of Vapnik-Chervonenkis risk estimations. To find a distribution providing maximum of empirical risk bias one need to solve an optimization problem on function space. The problem being very complicate in general case appears to be solvable when the "independent" feature is a space of isolated points. The space has low practical use but it allows scaling well-known estimations by Vapnik and Chervonenkis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.