Abstract

Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha−1 in 1980 to 31.0 Mg ha−1 in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations.

Highlights

  • From a global perspective forest ecosystems account for 80% of biomass carbon of terrestrial vegetation and play an important role in carbon cycling in terrestrial ecosystems [1]

  • With respect to the results from the two approaches designed in this study, there was no significant difference in estimates of total forest biomass carbon (FBC) between them

  • Young and middle-age forests account for a high proportion of forests in Liaoning Province, which in turn contributes to wide differences in estimates of forest biomass from different methods

Read more

Summary

Introduction

From a global perspective forest ecosystems account for 80% of biomass carbon of terrestrial vegetation and play an important role in carbon cycling in terrestrial ecosystems [1]. Forest biomass carbon is significantly affected by timber harvesting, land use, climate change and other natural and human-induced disturbances [2]. Given that forests are the major carbon sink in China, the accurate estimate of forest carbon storage and its change is critical for understanding the budget with respect to China’s CO2 emissions, as well as for scientific assessment of the effects of forest management on the capacity of forests to act as carbon sinks. China’s continuous forest inventories began in 1973 and have completed seven rounds, each covering a five-year period. Since the early 1980s, the data have been widely used to calculate forest biomass carbon (FBC) storage at regional and national scales [3,4,5,6,7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.