Abstract

There are many sources of volatile organic compounds (VOCs) in indoor environments, leading to much higher total indoor VOC concentrations than outdoor counterparts. Given the potential health hazards associated with VOC exposure, it is necessary to estimate the indoor VOC emission strengths. In this study, the indoor and outdoor concentrations of 43 VOCs were concurrently measured in 8 urban residences, Beijing. The indoor/outdoor concentration ratio was used to screen out 36 species having significant indoor sources. A one-compartment steady-state model was developed to estimate the indoor emission strengths of these VOCs, in which ventilation and reaction with ozone were included as sink routes. The order of VOCs in terms of indoor emission strength was d-limonene (a median value of 1.05 g/h), α-pinene (82.50 mg/h), styrene (24.12 mg/h), ß-pinene (9.70 mg/h), formaldehyde (1.97 mg/h), n-dodecane (1.82 mg/h), n-pentadecane (1.66 mg/h), n-hexadecane (1.62 mg/h), n-undecane (1.20 mg/h), acetaldehyde (1.05 mg/h) and 1, 4-dichlorobenzene (0.80 mg/h). The sum of estimates of those VOCs accounted for >95% of total emission strength. Specific indoor sources of those VOCs in the tested homes were identified. Air exchange rate, indoor temperature and air humidity were found to pose significant impacts to the indoor emission strengths of VOCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.