Abstract

The objective of this effort was to assess whether a simple relationship could be developed between the behavior of surface cracks in straight pipe and in elbows. If such a geometric relationship could be developed, then a simple multiplier could be applied to the current straight-pipe solutions that are already used in codes and standards such as the ASME or other codes. In order to accomplish this objective, solutions from elbow and straight-pipe elastic-plastic fracture mechanics (EPFM) analyses were used along with experimental data. The elbow EPFM solution came from a J-estimation scheme developed during the IPIRG-2 program. These solutions were for an elbow with a pressure at the design stress limits of Section III of the ASME Code for typical nuclear piping steels. Significant efforts were undertaken in that program to develop J-estimation schemes for axial (along the side of the elbow) and circumferential surface cracks (centered on the extrados) in elbows under constant pressure and in-plane bending. These analyses were developed using the GE/EPRI methodology of determining an elastic and plastic contribution to J, and developing the appropriate functions through a matrix of EPFM finite element analyses. Even with this large matrix of FEM analyses, only one circumferential crack length and one axial crack length were investigated. Hence, it was desirable to develop a method to extend the analysis capabilities to other crack geometry, as well as developing a simplified procedure. A comparison of the elbow to straight-pipe moment versus crack-driving force curves showed that there is a simple multiplier linearly related to the ASME B2 stress index for elbows of different R/t ratios. Hence, a simplified procedure was determined where the straight-pipe solution could be multiplied by a function of the elbow stress indices to give the maximum load prediction of the surface-cracked elbow. Comparisons were made to circumferential surface-cracked elbow data from the IPIRG-2 program, and an axial surface-cracked elbow test conducted by EDF. The comparisons showed the simplified methods to be quite promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.