Abstract
AbstractMelt ponds on summer Arctic sea ice control surface albedo, governing energy and mass balance of the ice. The date ponds first form has been connected to interannual variations in ice retreat. Here we evaluate the surface energy balance that governs this critical pond formation date. A three‐dimensional sea ice model with resolved melt ponds is used to diagnose pond onset date at a coastal site across years with observed surface fluxes but incomplete pond observations. Results show that the combined sensible and latent heat flux is the best predictor of pond formation date. This finding supports the hypothesis that synoptic weather events transporting warm, moist air into the Arctic are key to initiating pond formation, triggering albedo feedbacks, and, by extension, ice retreat. Changes in timing and frequency of spring warm air incursions may have significant implications on the ice cover and provide predictive power over seasonal ice retreat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.