Abstract

UDP-glucuronosyltransferase 1A1 (UGT1A1) is an enzyme that is found in the endoplasmic reticulum membrane and can reportedly have a large number of amino acid substitutions that result in the reduction of glucuronidation capacity. For example, adverse drug reactions when patients receive CPT-11 (irinotecan) such as in cancer chemotherapy are caused by amino acid substitutions in UGT1A1. We previously found that the extent of the docking when the hydroxyl residue of bilirubin was oriented toward UDP-glucuronic acid correlated with in vitro conjugation capacity. In this study, we analyzed the conformation of mutant UGT1A1s by means of structural optimization with water and lipid bilayers instead of the optimization in vacuo that we used in our previous study. We then derived a mathematical model that can predict the conjugation capacities of mutant UGT1A1s by using results of substrate docking in silico and results of in vitro analysis of glucuronidation of acetaminophen and 17β-estradiol by UGT1A1s. This experimental procedure showed that the in silico conjugation capacities of other mutant UGT1A1s with bilirubin or SN-38 were similar to reported in vitro conjugation capacities. Our results suggest that this experimental procedure described herein can correctly predict the conjugation capacities of mutant UGT1A1s and any substrate.

Highlights

  • Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) is a member of the UDP-glucuronosyltransferase 1A enzyme family that is mainly localized in the smooth endoplasmic reticulum in the liver and other tissues [1]

  • In our previous research based on their report, we showed that conjugation proceeded when the hydroxyl residue of bilirubin was oriented toward UDP-glucuronic acid (UDPGA) [5]

  • Correlation between the results of docking simulation and in vitro conjugation capacity To evaluate the results of molecular simulation analyses for the mathematical model for glucuronidation by UGT1A1, we compared the in vitro conjugation capacity of UGT1A1 against AAP and E2 with the results of docking simulation analysis

Read more

Summary

Introduction

Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) is a member of the UDP-glucuronosyltransferase 1A enzyme family that is mainly localized in the smooth endoplasmic reticulum in the liver and other tissues [1]. Locuson and Tracy [4] reported on a binding model of UGT1A1 with a coenzyme, UDP-glucuronic acid (UDPGA), whose binding site included the amino acids S38, H173, G308, L355, S375, H376, and G377. In our previous research based on their report, we showed that conjugation proceeded when the hydroxyl residue of bilirubin was oriented toward UDPGA [5]. Major mutations of UGT1A1, especially the UGT1A1 6 and UGT1A1 28 mutations, are well known to reduce conjugation capacity. For our research reported here, we revised our previous molecular simulation analyses, which led to a mathematical model for the conjugation process in order to predict the conjugation capacity for substrates such as bilirubin and SN-38. We demonstrate here that our mathematical model using the docking results for a specific number of UDPGA-oriented hydroxyl residues of substrates can predict the conjugation capacities of mutant UGT1A1s

Materials and methods
Results
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.