Abstract

An exact analysis of necessary and sufficient conditions for the establishment and protectedness of biallelic two-locus polymorphisms is developed for the classical model with constant, sexually symmetric fitnesses and random association of the successful gametes. To demonstrate application of the results to common model types, the model of symmetric viabilities depending on the degree of heterozygosity only is chosen as a paradigm. It is pointed out that a unique locally stable internal equilibrium may exist even though all marginal equilibria (including the fixation states) are locally attractive. This example is quoted as an indication of the priority that analyses of protectedness deserve over analyses of local stability or instability of internal equilibria. Further applications of broader appeal concern the role that recombination plays in protecting polymorphisms. Probably the most interesting finding is that with increasing recombination frequency the chances for protectedness of a polymorphism generally decline. Yet, if a certain hierarchic ordering of the fitnesses with respect to the degree of heterozygosity is realized, the polymorphism is protected for arbitrary amounts of recombination. If recombination is rare, heterozygote advantage is not a universal precondition for persistence of polymorphisms. This phenomenon is utilized to derive conditions under which deleterious recessive mutants can be maintained in a population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.