Abstract
Therapeutic angiogenesis is thought to be beneficial for serious ischemic diseases. This investigation was designed to establish a simple and practical procedure applicable to therapeutic angiogenesis. When cultured skeletal muscle cells were electrically stimulated at a voltage that did not cause their contraction, vascular endothelial growth factor (VEGF) mRNA was augmented at an optimal-frequency stimulation. This increase of VEGF mRNA was derived primarily from transcriptional activation. Electrical stimulation increased the secretion of VEGF protein into the medium. This conditioned medium then augmented the growth of endothelial cells. The effect of electrical stimulation was further confirmed in a rat model of hindlimb ischemia. The tibialis anterior muscle in the ischemic limb was electrically stimulated. The frequency of stimulation was 50 Hz and strength was 0.1 V, which was far below the threshold for muscle contraction. After a 5-day stimulation, there was a significant increase in blood flow within the muscle. Immunohistochemical analysis revealed that VEGF protein was synthesized and capillary density was significantly increased in the stimulated muscle. Rats tolerated this procedure very well, and there was no muscle contraction, muscle injury, or restriction in movement. We propose this procedure as a simple and practical method of therapeutic angiogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.