Abstract

Patients with ovarian cancer are at increased risk of venous thromboembolism (VTE), and the cumulative incidence is high, particularly at advanced stages of this disease. Nevertheless, it is challenging to investigate the molecular mechanisms of ovarian cancer-associated VTE (OC-VTE), mainly due to the lack of a well-developed animal model for this disease. We generated a mouse model for developing OC-VTE using ovarian cancer cell injection in combination with the inferior vena cava stenosis method. The rate of thrombosis in the OC-VTE group was 50%, compared with 0 in the control group. Moreover, we conducted a proteomic analysis using platelets from these models and revealed differentially expressed proteins between the OC-VTE and control groups, including upregulated and downregulated proteins. Gene Ontology analysis revealed that these differentially expressed proteins were mostly enriched in the biological process of negative regulation of fibrinolysis and the cellular component of the fibrinogen complex, both of which play key roles in thrombosis. In conclusion, this study lays the foundation for further investigation of the underlying mechanisms of how ovarian cancer promotes VTE formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.