Abstract

BackgroundMetastatic Axillary Lymph Node (mALN) status is currently the most important prognostic factor in the management of primary breast cancer (BC). Thus, development of specimens which enable identification of new mALN markers, involved in the progression of the disease, are of considerable interest. The specific aim of this work was to describe the method of establishment of Metastatic Axillary Nodal Cell Suspension and its fractionation, termed Fractionated Nodal Cell Suspension (FNCS), into nuclear and cytosolic extracts to enable determination of protein expression levels of nuclear cFOS and cytosolic Transforming Growth Factor β1 (TGFβ1) in BC patients.ResultsTo standardize the procedure, HeLa cells were successfully fractionated into nuclear/cytosolic extracts with confirmed presence of nuclear cFOS and cytosolic TGFβ1 proteins. Subsequently, the ALN Cell Suspension specimens were obtained and further fractionated from a pilot sample of six ALN tissue pairs, mALN versus autologous normal ALN (nALN), dissected from invasive BC patients. The mALN/nALN results revealed overexpression of both nuclear cFOS and cytosolic TGFβ1 protein levels. However, only the TGFβ1 data exhibited statistically significant overexpression, which was proportional to the respective values of mALN diameter of tumor deposits.ConclusionsDetailed protocol for establishment and fractionation of mALN cell suspension specimens, termed FNCS, into nuclear and cytosolic extracts is here described for the first time. This approach might be a convenient ex vivo model for simultaneous analysis of protein, RNA and DNA biomarkers from nuclear/cytosolic extracts of the same mALN tissue sample. It might have potential to enable, in the age of genomics and personalized medicine, an identification of novel mALN biomarkers and thus improve the screening, diagnosis and prognosis of invasive BC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call