Abstract
The density functional theory calculations presented in this work allow the first rationalization of the full linkage photoisomerization mechanism of trans-[RuCl(NO)(py)4](2+), in both the forward and reverse directions. These mechanisms are consistent with the experimental data establishing that blue-light irradiation triggers the forward process, while red or IR photons trigger the reverse process. Characterization of the singlet and lowest triplet potential energy surfaces shows that, despite the unfavorable thermodynamic character of the forward process, the topologies of the surfaces and particularly some crucial surface crossings enable the isomerization. In the forward Ru-NO → Ru-ON direction, a sequential two-photon absorption mechanism is unraveled that involves a sideways-bonded metastable state. In contrast, in the reverse reaction, two mechanisms are proposed involving either one or two photons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.