Abstract

Spider silk exhibits an excellent combination of high strength and toughness, which originates from the hierarchical self-assembled structure of spidroin during fiber spinning. In this work, superfine nanofibrils are established in polyelectrolyte artificial spider silk by optimizing the flexibility of polymer chains, which exhibits combination of breaking strength and toughness ranging from 1.83 GPa and 238 MJ m−3 to 0.53 GPa and 700 MJ m−3, respectively. This is achieved by introducing ions to control the dissociation of polymer chains and evaporation-induced self-assembly under external stress. In addition, the artificial spider silk possesses thermally-driven supercontraction ability. This work provides inspiration for the design of high-performance fiber materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.