Abstract

This paper reports the analysis of compositions for fire protection of wood that established that there are not enough data to explain and describe the process of fire protection and, accordingly, the fire-hazardous properties of wood, in order to protect people. The development and research of a set of properties of fire-resistant materials leads to the design of new types of such materials. The object of this study was a fire-protective two-component intumescent varnish for wood. The essence of the research is to determine the indicators of fire danger of wood, fire-protected by coatings, and the impact exerted on them by the formed heat-insulating layer of coke, making it possible to justify the effectiveness of the fire-retardant coating under the influence of temperature. The volume of fire-retardant and hydrophobic coating has been optimized, which ensures the lowest value of loss of mass by fire-protected wood during thermal action. Its lowest value was determined when using flame retardant in the volume of 589 g/m2 and a hydrophobic agent in the volume of 54 g/m2. When determining the combustibility of fire-resistant wood, it was established that the temperature of flue gases during tests was no more than 103 °C, the length of damage to the sample did not exceed 143 mm. At the same time, the weight loss did not exceed 19 g, and the independent burning of wood did not exceed 23 s. In addition, the wood withstood the surface effect of a heat flow of 35 kW/m2, while surface combustion did not occur, and the value of the coefficient of smoke formation was 432 m2/kg during the smoldering of the fire-proof sample. Unlike wood protection with fire-retardant swelling paint, the fireproof wood with two-component varnish, does not change color and refers to low combustibility materials; it is hard to ignite, dose not spread the flame by surface, with moderate smoke-forming ability. The practical significance is the fact that a certificate of conformity was issued based on the reported results. Thus, there are grounds to assert the possibility of directed adjustment of wood fire protection processes by using coatings that can form a protective layer on the surface of the material

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.