Abstract

Formation of pre-replicative complexes at origins is an early cell cycle event essential for DNA duplication. A large body of evidence supports the notion that Cdc6 protein, through its interaction with the origin recognition complex, is required for pre-replicative complex assembly by loading minichromosome maintenance proteins onto DNA. In fission yeast and Xenopus, this reaction known as the licensing of chromatin for DNA replication also requires the newly identified Cdt1 protein. We studied the role of hCdt1 protein in the duplication of the human genome by antibody microinjection experiments and analyzed its expression during the cell cycle in human non-transformed cells. We show that hCdt1 is essential for DNA replication in intact human cells, that it executes its function in a window of the cell cycle overlapping with pre-replicative complex formation and that it is necessary for the loading of minichromosome maintenance proteins onto chromatin. Intriguingly, we observed that hCdt1 protein, in contrast to other licensing factors, is already present in serum-deprived G0 arrested cells and its levels increase only marginally upon re-entry in the cell cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.