Abstract

Poultry production, health and wellbeing are highly dependent upon formulation of balanced rations in terms of energy, protein, and micronutrients (vitamins and minerals). Among all, minerals are required in fewer quantities, but they are very important to maintain the productivity in poultry. Minerals present in the feeds are less bioavailable and additional supplementation is obligatory to meet the physiological demands of poultry. Conventionally, minerals are supplemented as inorganic salts, which are less absorbed and, thus, a major proportion is excreted to the surroundings creating environment issues. Nano-minerals and organic mineral chelates are other alternative to be used as livestock and poultry feed supplements. Though organic minerals are more bioavailable than inorganic salts, their high cost limits its use. In contrast, nano-minerals are relatively easy to synthesize at a lower cost. Nano-minerals are of the size from 1–100 nm and due to such small size, there is an enormous increase in surface area and thus their biological responses. The biological response studies have signified better retention of nano-minerals as compared to inorganic salts, and consequently leached less to the environment preventing possible pollution. Apart from these, nano-minerals have been shown to enhance growth, egg production and quality, immune-modulation and antioxidant status, and at the same time economize the production by reducing the supplemental dose of minerals and improving the feed conversion ratio. Some nano-minerals and other nanoparticles have strong antimicrobial effects, which have been shown to reduce pathogenic microorganisms in the gut. Nano-minerals seem to be less toxic than conventional mineral sources. Though less, few studies have indicated toxic effects of nano-mineral supplementation at higher dose of application, which should be validated by more programmed studies. Nanotechnology in poultry production system is still in its budding stage and more detailed studies are warranted to validate, establish and search for new effects of nano-minerals as they sometimes produce effects beyond expectation. This review highlights the biological responses of nanominerals on poultry production performance, quality of meat and eggs, tissue retention, immunity, antioxidant activity and antimicrobial actions compared with their conventional mineral sources.

Highlights

  • Mineral nutrition is an indispensible part of animal feeding system which ensures optimum health, production, and reproduction in animals and birds

  • This chapter discusses synthesis of different nano-minerals, their mechanism of action, poultry performance, tissue retention, immunity, antioxidant activity and antimicrobial actions compared with their conventional mineral sources

  • Ganjigohari et al [84] reported a drop in egg production percentage, egg mass and low blood Ca level by reducing 4.03% of Ca carbonate by 0.126% Ca carbonate nano-sized particle (NP) in laying hens as compared to birds supplemented with 4.03% of Ca carbonate replaced by 2.02%, 1.01%, 0.25% Ca carbonate NP, which would be due to too much reduction in the Ca level in the bird’s diet

Read more

Summary

Introduction

Mineral nutrition is an indispensible part of animal feeding system which ensures optimum health, production, and reproduction in animals and birds. Even though, required in small quantities as compared to other nutrients such as energy and protein, their deficiency and imbalances are promptly reflected in the changes of animal wellbeing and their production. Sometimes, this may cost the animals with their lives. Nano-sized minerals are considered to have greater bioavailability in animals and birds due to increased surface area, which tend to produce better desirable responses [2]. This chapter discusses synthesis of different nano-minerals, their mechanism of action, poultry performance, tissue retention, immunity, antioxidant activity and antimicrobial actions compared with their conventional mineral sources

Importance of mineral nutrition in biological system
Sources of minerals
Nano-minerals: synthesis
Mechanism of action of nanominerals
Mineral absorption and metabolism
Nano-mineral supplementation and mineral retention
Growth performance and meat quality
Impact of nanominerals on layers
10. Impact of nanominerals on anti-oxidative activity
11. Effect of nanominerals on health and immunity
12. Nanominerals as antimicrobial feed additives
13. Environment implication of nanomineral supplementation
14. Special aspects of nanominerals
15. Other nanoparticles in poultry nutrition
Findings
16. Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.