Abstract
Readily curable plasmids facilitate the construction of plasmid-free bacterial strains after the plasmid encoded genes are no longer needed. The most popular of these plasmids features a temperature-sensitive (Ts) pSC101 origin of replication which can readily revert during usage and cannot be used to construct Ts mutations in essential genes. Plasmid pAM34 which contains an IPTG-dependent origin of replication largely overcomes this issue but is limited by carrying the most commonly utilized antibiotic selection and replication origin. This study describes the construction of an expanded series of plasmid vectors having replication origins of p15a, RSF1030 or RSF1031 that like pAM34 have IPTG-dependent replication. Surprisingly, these plasmids can be cured in fewer generations than pAM34. Derivatives of pAM34 with alternative antibiotic selection markers were also constructed. The utility of these vectors is demonstrated in the construction of a CRISPR-Cas9 system consisting of an IPTG-dependent Cas9 plasmid and a curable guide RNA plasmid having a streptomycin counterselection marker. This system was successfully demonstrated by construction of point mutations, deletions and insertions in the E. coli genome with a very high efficiency and in a shorter timescale than extant methods. The plasmids themselves were readily cured either together or singly from the resultant strains with minimal effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.