Abstract

Twenty-three Escherichia coli strains were tested for their ability to use taurine, methanesulfonate, L-cysteate and other alkanesulfonates as sole sulfur sources for growth. One strain was unable to use any of the alkanesulfonates offered as sole sulfur sources for growth but grew with sulfate. Seven strains (class I) used alkanesulfonates for this purpose, but not methanesulfonate or L-cysteate. A further seven strains (class II) grew with all compounds tested, except with L-cysteate, and eight strains (class III) utilized all compounds tested as sulfur sources. Sulfur assimilation from methanesulfonate and L-cysteate was absolutely dependent on the ssuEADCB operon that encodes an alkanesulfonate uptake system (SsuABC) and a two-component monooxygenase (SsuDE) involved in the release of sulfite from alkanesulfonates. Long-term exposure of class I strains to methanesulfonate and of class II strains to L-cysteate selected for derivatives that utilized these two sulfur sources as efficiently as sulfate. The nucleotide sequence of the ssuEADCB operon in the methanesulfonate- and L-cysteate-utilizing derivative EC1250Me + was identical to that in the class I wild-type EC1250. Gain of the ability to utilize methanesulfonate and L-cysteate as sulfur sources thus appears to result from increased expression of ssu genes rather than from a change in the quality of one or several of the Ssu proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.