Abstract

BackgroundStudies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. The AtoSC system of E. coli activates the expression of atoDAEB operon genes, and the subsequent catabolism of short-chain fatty acids, upon acetoacetate induction. Transcriptome and phenotypic analyses suggested that atoSC is also involved in several other cellular activities, although we have recently reported a palindromic repeat within the atoDAEB promoter as the single, cis-regulatory binding site of the AtoC response regulator. In this work, we used a computational approach to explore the presence of yet unidentified AtoC binding sites within other parts of the E. coli genome.ResultsThrough the implementation of a computational de novo motif detection workflow, a set of candidate motifs was generated, representing putative AtoC binding targets within the E. coli genome. In order to assess the biological relevance of the motifs and to select for experimental validation of those sequences related robustly with distinct cellular functions, we implemented a novel approach that applies Gene Ontology Term Analysis to the motif hits and selected those that were qualified through this procedure. The computational results were validated using Chromatin Immunoprecipitation assays to assess the in vivo binding of AtoC to the predicted sites. This process verified twenty-two additional AtoC binding sites, located not only within intergenic regions, but also within gene-encoding sequences.ConclusionsThis study, by tracing a number of putative AtoC binding sites, has indicated an AtoC-related cross-regulatory function. This highlights the significance of computational genome-wide approaches in elucidating complex patterns of bacterial cell regulation.

Highlights

  • Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role

  • AtoSC is a two-component regulatory system that activates the transcription of the atoDAEB operon genes in E. coli, the products of which are involved in the catabolism of short-chain fatty acids [1,2,3]

  • Chromatin immunoprecipitation (ChIP) experiments confirmed in vivo acetoacetate-inducible AtoC binding [5]

Read more

Summary

Introduction

Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. Transcriptome and phenotypic analyses suggested that atoSC is involved in several other cellular activities, we have recently reported a palindromic repeat within the atoDAEB promoter as the single, cis-regulatory binding site of the AtoC response regulator. AtoSC is a two-component regulatory system that activates the transcription of the atoDAEB operon genes in E. coli, the products of which are involved in the catabolism of short-chain fatty acids [1,2,3]. The AtoC binding site was experimentally verified as an inverted 40-bp palindrome (two identical inverted 20-bp sites), located upstream of the transcription initiation site of the atoDAEB operon. These cis-elements were found to control both the promoter inducibility by acetoacetate and AtoC binding. Chromatin immunoprecipitation (ChIP) experiments confirmed in vivo acetoacetate-inducible AtoC binding [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.