Abstract
In animal diets optimal amino acid quantities and balance among amino acids is of great nutritional importance. Essential amino acid deficiencies have negative impacts on animal physiology, most often expressed in sub-optimal body weight gains. Over supplementation of diets with amino acids is costly and can increase the nitrogen emissions from animals. Although in vivo animal assays for quantification of amino acid bioavailability are well established, Escherichia coli-based bioassays are viable potential alternatives in terms of accuracy, cost, and time input. E. coli inhabits the gastrointestinal tract and although more abundant in colon, a relatively high titer of E. coli can also be isolated from the small intestine, where primary absorption of amino acids and peptides occur. After feed proteins are digested, liberated amino acids and small peptides are assimilated by both the small intestine and E. coli. The similar pattern of uptake is a necessary prerequisite to establish E. coli cells as accurate amino acid biosensors. In fact, amino acid transporters in both intestinal and E. coli cells are stereospecific, delivering only the respective biological l-forms. The presence of free amino- and carboxyl groups is critical for amino acid and dipeptide transport in both biological subjects. Di-, tri- and tetrapeptides can enter enterocytes; likewise only di-, tri- and tetrapeptides support E. coli growth. These similarities in addition to the well known bacterial genetics make E. coli an optimal bioassay microorganism for the assessment of nutritionally available amino acids in feeds.
Highlights
Biosensors make use of biological components to detect small amounts of chemicals or to characterize samples physiologically or chemically
Escherichia coli has been used as a sensor for sugars by Held et al [8], who used it to detect both mono- and disaccharides
Rapid and currently in use, chemical methods for the determination of amino acid levels in feed ingredients including high performance liquid chromatography (HPLC) and gas chromatography (GC) are not the most appropriate because they result in higher values than the amounts of amino acids utilized under physiological conditions [15]
Summary
Biosensors make use of biological components to detect small amounts of chemicals or to characterize samples physiologically or chemically. Rapid and currently in use, chemical methods for the determination of amino acid levels in feed ingredients including high performance liquid chromatography (HPLC) and gas chromatography (GC) are not the most appropriate because they result in higher values than the amounts of amino acids. Animal assays i.e. in vivo methods, are considered standard methods for the determination of bioavailable amino acids because obtained results represent the actual animal response to dietary treatments [16] These methods are very expensive, laborious, and time consuming [17]. The purpose of this review is to describe and evaluate the theoretical basis of the possible use of Escherichia coli as a biosensor for determination of bioavailable amino acids in feed proteins. Major topics include discussion of E. coli as a natural inhabitant of the animal alimentary tract, comparison of amino acid/peptide assimilation by the small intestine and E. coli, and justification of the potential commercial applications for E. coli in the estimation of bioavailable amino acids in protein sources
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.