Abstract

Based on a system-reservoir model, where the reservoir is driven by an external stationary, Gaussian noise with arbitrary decaying correlation function, we study the escape rate from a metastable state in the energy diffusion regime. For the open system we derive the Fokker-Planck equation in the energy space and subsequently calculate the generalized non-Markovian escape rate from a metastable well in the energy diffusion domain. By considering the dynamics in a model cubic potential we show that the results obtained from numerical simulation are in good agreement with the theoretical prediction. It has been also shown numerically that the well-known turnover feature can be restored from our model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.