Abstract

It is commonly believed that bacterial chemotaxis helps cells find food. However, not all attractants are nutrients, and not all nutrients are strong attractants. Here, by using microfluidic experiments, we studied Escherichia coli chemotaxis behavior in the presence of a strong chemoattractant (e.g., aspartate or methylaspartate) gradient and an opposing gradient of diluted tryptone broth (TB) growth medium. Our experiments showed that cells initially accumulate near the strong attractant source. However, after the peak cell density (h) reaches a critical value [Formula: see text], the cells form a "escape band" (EB) that moves toward the chemotactically weaker but metabolically richer nutrient source. By using various mutant strains and varying experimental conditions, we showed that the competition between Tap and Tar receptors is the key molecular mechanism underlying the formation of the escape band. A mathematical model combining chemotaxis signaling and cell growth was developed to explain the experiments quantitatively. The model also predicted that the width w and the peak position [Formula: see text] of EB satisfy two scaling relations: [Formula: see text] and [Formula: see text], where l is the channel length. Both scaling relations were verified by experiments. Our study shows that the combination of nutrient consumption, population growth, and chemotaxis with multiple receptors allows cells to search for optimal growth condition in complex environments with conflicting sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.