Abstract

The prebiotic generation of sugars in the context of origins of life studies is of considerable interest. Among the important intramolecular processes of sugars are carbonyl migrations and accompanying epimerizations. Herein we describe the carbonyl migration-epimerization process occurring down the entire carbon chain of chirally pure d-tetroses sugars under mild conditions. Employing chirally pure 1-13 C-erythrose, 4-13 C-erythrose and 1-13 C-threose, we (1) identify all the species formed as the carbonyl migrates down the four-carbon chain and (2) assess the rates associated with the production of each of these species. Competing aldol reactions and oxidative fragmentation processes were also observed. Further observations of self-condensation of glycolaldehyde mainly yielding 2-keto-hexoses (sorbose and tagatose) and tetrulose also provides a basis for understanding the effect of carbonyl migrations on the product distribution in plausible prebiotic scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.