Abstract

Kīlauea Volcano is an archetype for the complex interactions that can occur between a volcano's summit and flanks. Decades of monitoring at Kīlauea have demonstrated that magma rises beneath the summit and flows laterally at shallow depths to erupt along the rift zones. Kīlauea's recent eruptions at Halema‘uma‘u and Pu‘u ‘Ō‘ō mark the first time in the historic record that long-term (>1 year) eruptions have been concurrent at the summit and a rift zone, offering a new opportunity to improve our understanding of the relationship between these two segments of the magmatic system. While magma supply rate beneath the summit has been shown in previous studies to be a primary control on magmatic system pressure and eruptive activity, the role of the eruptive vent has been less clear. Our study shows that a dynamic equilibrium is maintained between Kīlauea's summit and East Rift Zone (ERZ) eruptive vent—and lava lake level fluctuations are closely coupled at the two eruption sites—providing new constraints on the hydraulic connection and ERZ conduit. We show that localized changes at the ERZ eruption site during 2010–2011 regulated summit behavior in an uprift direction over distances of ∼20 km. Changes in the elevation and efficiency of the ERZ vent affect pressure in Kīlauea's magmatic system and impact summit behavior. Thus, the hydraulic connection between the summit and rift zone is a “two-way street” that transmits both downrift- and uprift-directed changes. Our results support recent work at other volcanoes that shows a complex interplay between a volcano's summit reservoir and flank conduit during flank eruptions, and suggest that explosive summit activity may in some cases be triggered by changes far away on a volcano's rift. These concepts were reinforced by the historic eruptive activity on Kīlauea that occurred during May–August 2018, when the manuscript was being revised.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.