Abstract

Abstract Using the observations from the Solar Dynamics Observatory, we study an eruption of a hot-channel flux rope (FR) near the solar limb on 2015 February 9. The pre-eruptive structure is visible mainly in EUV 131 Å images, with two highly sheared loop structures. They undergo a slow rising motion and then reconnect to form an eruptive hot channel, as in the tether-cutting reconnection model. The J-shaped flare ribbons trace the footpoint of the FR that is identified as the hot channel. Initially, the hot channel is observed to rise slowly at 40 km s−1, followed by an exponential rise from 22:55 UT at a coronal height of 87 ± 2 Mm. Following the onset of the eruption at 23:00 UT, the flare reconnection then adds to the acceleration process of the coronal mass ejection (CME) within 3 R ⊙. Later on, the CME continues to accelerate at 8 m s−2 during its propagation period. Further, the eruption also launched type II radio bursts, which were followed by type III and type IVm radio bursts. The start and end times of the type IVm burst correspond to the CME’s core height of 1.5 and 6.1 R ⊙, respectively. Also, the spectral index is negative, suggesting that nonthermal electrons are trapped in the closed loop structure. Accompanied by this type IVm burst, this event is unique in the sense that the flare ribbons are very clearly observed together with the erupting hot channel, which strongly suggests that the hooked parts of the J-shaped flare ribbons outline the boundary of the erupting FR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.