Abstract

Achieving orbital accuracies in the radial direction for ERS-1 commensurate with those for TOPEX/Poseidon is of utmost importance for the integration of the two altimeter data sets. This paper outlines a procedure whereby the radial orbit error for ERS-1 is recovered as a time series expansion in the form of a finite Fourier series with additional terms for atmospheric drag, solar radiation pressure, and initial state vector mismodelling. Using a least squares collocation method with constraints derived from the JGM2 gravity field co-variance matrix, the radial error is recovered using both dual crossovers and ERS-1 single satellite crossovers. Aggregate arcs are then used to derive the ERS-1 orbit error over the repeat period of 35 days. The results are presented in the improvement of fit in the dual crossover, ERS-1 crossover and altimetry data sets as well as the recovery of an altimeter bias for the two satellites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.