Abstract
AbstractThe measurement of residual stress, using X-ray diffraction techniques, is based on the change in diffraction angle determined for the Intensity maximum of some suitable reflection from the sample when this is placed consecutively with its surface at two different angles to the diffracting planes. These diffraction angles may be obtained in a variety of ways, but are most often calculated from measurements of three X-ray diffraction intensities at angles selected in the immediate vicinity of the peak maximum at each sample angle and fitting each set of data to a parabolic curve. A simple mathematical expression may be derived relating the diffraction angles, and hence the residual stress, to the measured X-ray intensities; there will, however, be statistical errors in the calculated diffraction angles due to random counting errors in the measurement of the X-ray diffraction intensities. From the expression relating the residual stress to the X-ray intensities an equation has been derived giving the standard deviation in the residual stress due to random counting errors. In addition, a simple approximation has been obtained from this equation showing that the standard deviation is decreased by increasing the number of counts accumulated for each X-ray intensity measurement and by increasing the size of the angular increments between the data points. It will also be shown that, using the approximation, it is possible to estimate in advance the number of accumulated counts at each point necessary to attain a desired standard deviation in a residual stress measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.