Abstract

We analyze and compare the error performance of a dual-rate direct-sequence code-division multiple-access (DS-CDMA) system using multicode (MCD) and variable-spreading gain (VSG) transmission in the uplink. Specifically, we present two sets of results. First, we consider an ideal additive white Gaussian noise channel. We show that the bit-error rate (BER) of VSG users is slightly lower than that of MCD users if the number of low-rate interferers is smaller than a specific threshold. Otherwise, they exhibit similar error performance. Second, we look at multipath fading channels. We show that with diversity RAKE reception, the VSG user suffers from a larger interference power than the MCD user if the channel delay spread is small. The reverse is true for a large delay spread. However, a larger interference power in this case does not necessarily lead to higher error probability. Essentially, our results for both cases show that: 1) in addition to the signal-to-interference ratio (SIR), the difference in error performance between the two systems strongly depends on the distributions of multiple-access and multipath interference; 2) for practical cellular communications, performances for both systems are expected to be similar most of the time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.